

Magnetic Resonance Imaging

F.R.C.R. Physics Lectures

Lawrence Kenning PhD

Clinical Radiology

Curriculum 2021

Topic area	Main points
7. Magnetic resonance	 Creation, detection and spatial localisation of the MR signal
	 Basic contrast mechanisms
	 Basic MRI sequences & common variants
	Frequency-dependent techniques
	 T1-dependent techniques
	Diffusion MRI
	 Acceleration techniques
	 Flow-related MR techniques
	 MR artefacts and artefact reduction techniques
	MR safety
	 Quality assurance

Clinical Radiology

Curriculum 2021

Guidance for the First FRCR Examination

https://www.rcr.ac.uk/sites/default/files/guida nce_for_the_first_frcr_examination.pdf

7.1 Creation, detection and spatial localisation of MR signal

- Nuclear magnetic resonance
- Precession about magnetic fields (B₀ and B₁)
- Equilibrium magnetisation (M_0) and dependence on the strength of the magnetic field, B_0
- Longitudinal (M_z) and transverse magnetisation (M_{xv})
- Slice Selection
- k-space:
 - Relationship between k-space and MR image
 - Frequency-encoding
 - Phase-Encoding
 - Awareness of different k-space trajectories and their advantages/disadvantages
- 2D versus 3D sequences

Hull University Teaching Hospitals NHS Trust

7.2 Basic Contrast Mechanisms

- T₁. Understand concept of MR signal saturation
- T_2 and T_2 *
- Impact of relaxivity of gadolinium-based contrast agents on T₁-weighted and T₂* weighted images
- Difference between a contrast-weighted MR image and a quantitative image (map)
- Extension of T₂*-weighted MRI to susceptibility-weighted imaging (SWI)

7.3 Basic MRI sequences & common variants

- Spoiled gradient echo, spin echo
- Multiple echo variants (TSE/FSE, EPI)
- Single shot versus multi shot
- Pulse sequence diagrams
- Basics of steady-state sequences

7.4 Frequency-dependant techniques

- Understanding of chemical shift: fat&water
- Fat saturation
- In-phase & out-of-phase TEs, Dixon
- Awareness of MR spectroscopy (MRS) and appropriate TEs for particular clinical questions

7.5 T1-dependant techniques

- Inversion recovery (IR)
- Suppression: STIR & FLAIR. The role(s) of TR (and T₁) in determining null point.
- Increase T1-weighting e.g. MPRAGE
- Phase-sensitive IR

7.6 Diffusion MRI

- Diffusion weighting, relationship with underlying cellularity
- B-values, ADCs and calculated b-values
- Potential perfusion contribution to ADC
- Diffusion anisotropy.

7.7 Acceleration techniques, their impact on image quality and potential artefacts

- Zero-filling (interpolation)
- Half-Fourier
- Parallel imaging
- Simultaneous multislice (multiband)
- Compressed sensing
- Temporal sharing (TWIST/TRICKS)

Hull University Teaching Hospitals NHS Trust

7.8 Flow-related MR techniques

- Dynamic contrast-enhanced (DCE)
- Perfusion MRI
 - Dynamic susceptibility contrast (DSC)
 - Awareness of arterial spin labelling (ASL)
 - DCE for myocardial perfusion, oncology
- MR angiography (MRA) techniques,
 - Time of flight
 - Contrast-enhanced
 - Phase contrast
- Other non-contrast enhanced MRA options

7.9 MR artefacts and artefact reduction techniques

- Causes of potential solution for artefacts found in MRI, including:
- Motion artefacts, respiratory gating, navigated sequences, saturation bands, radial-type k-space acquisitions
- B0 inhomogeneities, e.g. air/tissue interfaces or metal implants
- B1 inhomogeneities especially at 3T
- RF interference: instantaneous (RF spikes); continuous RF interface
- Phase wrap
- Truncation artefact (Gibb's ringing)
- Chemical shift, receiver bandwidth
- Fat-water swaps in Dixon MRI
- Poor geometry-factor with high acceleration factors in parallel imaging

Hull University Teaching Hospitals

7.10 MR safety (Part 1)

- MHRA guidelines as the primary safety reference for UK
- MR safety framework, definitions, roles & responsibilities
 - MR Responsible Person and MR Safety Expert
 - MR Authorised Persons
 - MR Environment and MR Controlled Access Area
 - MR Safe / MR Conditional / MR Unsafe / MR Unlabelled
- Safety issues, particularly with regards to implanted devices and emergency situations, including
 - Attraction, torque
 - RF heating: SAR and B₁₊ rms
 - Magnetic quench

Hull University Teaching Hospitals NHS Trust

7.10 MR safety (Part 2)

- Safety issues associated with gadolinium-based contrast agents
 - Linear versus macrocyclic-based agents
 - Nephrogenic systemic fibrosis (NSF)
 - Gadolinium deposition/retention
- Recommendations for scanning patients with implanted devices without the manufacturer's approval, e.g. 'off label'

7.11 Quality assurance

- Importance of quality assurance in MR to identify failing elements in phased array coils
- Quality assurance to help establish reproducibility of quantitative MR techniques

Useful Reading Materials

Hull University Teaching Hospitals

Books

- MRI from Picture to Proton
- Farr's Physics for Medical Imaging
- Webb's Physics of Medical Imaging
- MRI in Practice

Websites

- https://radiologylearninglondon.com/physics/frcr-part-1-physics-syllabus/
- http://mriquestions.com
- http://www.revisemri.com
- http://www.mrisafety.com
- https://www.gov.uk/government/publications/safety-guidelines-for-magneticresonance-imaging-equipment-in-clinical-use