

Magnetic Resonance Imaging

F.R.C.R. Physics Lectures

Lawrence Kenning PhD

FRCR MRI Syllabus

Hull University Teaching Hospitals

7.4 Frequency-dependant techniques

- Understanding of chemical shift: fat & water
- Fat saturation
- In-phase & out-of-phase TEs, Dixon
- Awareness of MR spectroscopy (MRS) and appropriate TEs for particular clinical questions

Fat issue

- Fat is hyperintense (bright) signal on T₁, T₂ and P.D. weighted imaging
- On T₂ and P.D. weighting imaging fluid is hyperintense
- On T₁ weighed post-contrast imaging, the effect of gadolinium is hyperintense

Water and Fat Molecules

- Signal from water and fat both originate from protons but there are two key differences:
- Relaxation Times
- Chemical Shift

Water molecule H₂O

Fat molecule –CH₂–

- Fat has a shorter T₁ relaxation rate than water
- The two dominate fat peaks (1.3ppm and 0.9ppm) experience a lower local magnetic field (B_0) due to the electron shielding compared to water (4.7ppm)
- Fat precesses at a lower frequency than water

Tissue	T ₁ 1.5T (ms)
Fat	260
Liver	500
Grey Matter	900
CSF	2400

Chemical Shift

- electron cloud around an atom shields the nucleus from the magnetic field (σ) :
- different resonant frequencies for different molecules

$$\omega_0 = \gamma (1 - \sigma) B_0$$

 γ = gyromagnetic ratio

 B_0 = magnetic field strength

 ω_0 = resonant frequency

Water and Fat Molecules

- The two dominate fat peaks (1.3ppm and 0.9ppm) experience a lower local magnetic field (B_0) due to the electron shielding compared to water
- Fat precesses at a lower frequency than water
- Chemical shift is 3.5ppm

1.5T scanner the fat-water frequency difference (Δf)

$$\Delta f = (64 \text{ MHz})(3.5 \text{ ppm}) = (64 \times 10^6 \text{ Hz})(3.5 \times 10^{-6}) \approx 220 \text{ Hz}$$

3.0T scanner the fat-water frequency difference (Δf)

$$\Delta f = (128 \text{ MHz})(3.5 \text{ ppm}) = (128 \times 10^6 \text{ Hz})(3.5 \times 10^{-6}) \approx 440 \text{ Hz}$$

RF pulse

3.5ppm

Only water remains when imaging sequence starts

Remarkable people.

CHESS (Chemical Shift Selective) aka 'fat sat'

Narrow excitation RF pulse

CHESS (Chemical Shift Selective) aka 'fat sat'

Remarkable people.

Extraordinary place.

Fat saturation

Hull University Teaching Hospitals

CHESS (Chemical Shift Selective) aka 'fat sat'

B₀ **inhomogeneity** – a lack of a homogeneous main magnetic field

- Different locations within the imaging volume experience a different B_0 and consequently precessional frequency
- The bandwidth of the initial narrow RF pulse may not excite all fat within the field

B₁ inhomogeneities

3.5ppm

Fat and water remains when imaging sequence starts

Fat saturation

CHESS (Chemical Shift Selective) aka 'fat sat'

B₁ inhomogeneity – a variable flip angle across the imaging field.

- Different locations within the imaging volume experience a different flip angle
- A significant longitudinal component remains for fat resulting in non saturation of all fat signal

Advantages	Disadvantages	Suggested applications
Versatile	Sensitive to B ₀ and B ₁ inhomogeneities	Most applications except areas with poor homogeneity*
Applicable to most pulse sequences	Low sequence efficiency	
Relatively fast		

^{*}off isocentre imaging, metal implants, anatomy with large shape differences e.g. breast, head and neck

Phase Cycling

• Differences in precessional frequencies of water and fat cause signals to move in phase (IP) and out of phase (OOP) with one another.

Dixon Technique (DIXON/FLEX/IDEAL)

Dixon Technique (DIXON/FLEX/IDEAL)

 IDEAL - Iterative Decomposition of Water and Fat With Echo Asymmetry and Least-Squares Estimation

Due to different precessional frequencies, water and fat become IN and OUT of

phase every 2.2ms at 1.5T

$$\frac{1}{2}[IP + OP] = \frac{1}{2}[(W+F) + (W-F)] = Water$$

$$\frac{1}{2}[P - OP] = \frac{1}{2}[W + F - W - F] = Fat$$

Dixon Technique

DIXON fat-nulling technique

DIXON fat-nulling technique - Robust in the presence of metal

In-phase & out-of-phase TEs, Dixon

Hull University Teaching Hospitals NHS Trust

Dixon Technique

Advantages	Disadvantages	Suggested applications
Insensitive to B ₀ * and B ₁ inhomogeneities	Long scan times	Anywhere CHESS or water excitation fail
Robust fat nulling even over large FOV's	Complex reconstruction	Especially good for large FOV, unfavourable anatomy or in the presence of metal
High SNR (vechoes)	Swapping artefact	
Multiple image types		

^{*}three or four point Dixon techniques only

Dixon Technique

DIXON CHESS

DIXON swap artefact

WATER FAT DIXON swap artefact

Local or global swap depending on vendor algorithm

Correct DIXON swap artefact

WATER FAT DIXON swap artefact

Local or global swap depending on vendor algorithm

DIXON swap artefact

DIXON swap artefact

Local or global swap depending on vendor algorithm

Technique	GE	Siemens	Philips
Fat saturation – chemical	Fat Sat	Fat Sat	SPIR
Dixon Fat-Water separation for FSE	IDEAL/FLEX for FSE	Dixon TSE	mDixon TSE
Dixon Fat-Water separation for 3D GRE	LAVA-Flex	Dixon VIBE	mDixon

Magnetic Resonance Spectroscopy (MRS):

MRS is a non-invasive tool for measuring metabolism in tissue

Examines metabolite signals thousands of times smaller than the water signal in MRI

'Virtual Biopsy'

Chemical Shift

- MR spectroscopy utilises chemical shift properties of different nuclei
- electron cloud around an atom shields the nucleus from the magnetic field (σ) :

$$\omega_0 = \gamma (1 - \sigma) B_0$$

• different resonant frequencies for different molecules

 γ = gyromagnetic ratio, B_0 = magnetic field strength, ω_0 = resonant frequency

Water Suppression

- Given the brain consists predominantly of water
- spectra are also dominated by water
- chemical shift selective (CHESS)
 pulse used first prior to acquisition

Awareness of MR spectroscopy (MRS) and appropriate TEs for particular clinical questions

Creatine (3.06ppm)

- Involved in energy metabolism via the creatine kinase reaction which generates ATP
- Metabolically active tissues (brain, muscle)
- Observed at a relatively constant level

NAA (2.02ppm)

- N-acetylaspartate (NAA)
- Largest signal in normal adult brain
- Neuronal cell marker
- Changes are non-specific
- Decreases in MS, tumour and infarct

Choline (3.24ppm)

- 3 choline containing metabolites
- Membrane synthesis and breakdown

Free choline

cell breakdown

Phosphocholine

cell density

Glycerophosphocholine

proliferation

Lactate (1.33ppm)

- Marker hypoxia and ischemia
- only very low concentrations exist in healthy brain tissue

Lactate

- AX₃ coupled metabolite
- weak interactions
- only very low concentrations exist in healthy brain tissue
- AX coupling causes the signal produced to modulate as function of echo time

 Larger signal from water, obscures smaller, lower SNR - 4.1ppm quadruplet of lactate

Awareness of MR spectroscopy (MRS) and appropriate TEs for particular clinical questions

ions Hull University Teaching Hospitals

Acquisition

- Simplest method to acquire spectroscopic data is in the form of a single localised voxel (single voxel spectroscopy (SVS)
- Three slice selective pulses to excite the volume of tissue
- Outer volume suppression is used to stop unwanted signal from outside of the voxel

Awareness of MR spectroscopy (MRS) and appropriate TEs for particular clinical questions Hull University Teaching Hospitals G_{x} **Single Voxel Spectroscopy**

PRESS

- Point Resolved Spectroscopy (90°-180°-180°)
- Based on a Spin Echo sequence, and was designed by Paul Bottomley in 1987 while working for General Electric
- At field strengths 3.0T, flip angles of 90° -137° 137° are used due to the need for a larger bandwidth without breaching the specific absorption ratio (SAR) limit

Single Voxel Spectroscopy

Hull University Teaching Hospitals

Single Voxel Spectroscopy

Pros

- High SNR
- Robust

Cons

- Partial volume effects
- No spatial information

T₂ Relaxation of Metabolites

T₂ Relaxation of Metabolites

NHS

Echo Time (TE)

TE = 35ms

- Higher SNR
- Sensitive to lipids and myo

TE = 144ms

- Flatter baseline which improves quantification
- Inverted lactate
- More robust

Single Voxel Spectroscopy

- 2 different echo times (144ms and 35ms) should be acquired
- 144ms provides a simpler more robust spectrum, with an inverted lactate if present
- 35ms has double the SNR but more complicated to interpret, will show presence of lipids
- Useful to have both! Once the first echo time is setup, copy and duplicate the position for second sequence

Magnetic Resonance Spectroscopic Imaging (MRSI)

single voxel spectroscopy

phase encoding steps

multivoxel spectroscopy

ions NHS Hull University Teaching Hospitals NHS Trust

Multivoxel Spectroscopy

Single or Multi-voxel Spectroscopy ???

- Check card for question
- Location and suspected pathology will determine choice of spectroscopic sequence

• Diagnostic questio	n - focal lesions larger than 15mm	n SVS
----------------------	------------------------------------	-------

 Biopsy targeting 	2D/3D MRSI
--------------------------------------	------------

 Tumour transformations 	2D/3D MRSI
--	------------

• Tumour Reoccurrence	/radionecrosis	2D/3D MRSI
-----------------------	----------------	------------

 Small lesions less than 15mm diameter 2D MRSI 	•	Small lesions	less than 15m	m diameter	2D MRSI
--	---	---------------	---------------	------------	---------

•	Temporal lo	be, brain ste	em or lesions	close to skull	SVS
---	-------------	---------------	---------------	----------------	-----

• Systemic diseases 2D/3D MRSI

Abscess

Key Features

• Choline/Creatine

• NAA

• Acetate (1.9ppm)

• Lipids

• Succinate (2.4ppm)

Hull University Teaching Hospitals

Astrocytic Tumours (WHO II/III)

Key Features

Choline/Creatine

• NAA

• Lipid (Grade III)

ions Wiss Hull University Teaching Hospitals

Oligodendroglial Tumours (WHO II/III)

Key Features

• Choline/Creatine

• NAA

• Lipid (Grade III)

Hull University Teaching Hospitals NHS Trust

Glioblastoma Multiforme (WHO IV)

Key Features

• 1.3ppm Lipid

Choline/Creatine

• NAA

Metastases

Key Features

• 1.3ppm Lipid

• Choline/Creatine

Characterisation of Brain Tumours without Contrast

Characterisation of Extensive T₂ Abnormalities

Glioblastoma (WHO IV)

Remarkable people. Extraordinary place.

Pseudo-progression vs Reoccurrence

Remarkable people. Extraordinary place.

Gliosis vs Residual Disease

Infiltrating Glioma WHO II/III

Flow Artefact

ions Hull University Teaching Hospitals

Other Nuclei

- Spectroscopy also possible with other nuclei, e.g. ³¹P and ¹³C.
- Phosphorus is less abundant than protons, so SNR poor. Since phosphorus major component in adenosine triphosphate (ATP), consumed and renewed during conversion of sugars to energy, ³¹P often used to study muscle metabolism.
- By labelling glucose with ¹³C, it is possible to study glucose metabolism in the brain.
- ²³Na has been used to measure intra and extracellular levels of sodium ions.

Awareness of MR spectroscopy (MRS) and appropriate TEs for particular clinical questions

Hull University Teaching Hospitals

Other Nuclei – Relative Sensitivities

Nucleus	Spin	γ Rad/T/s (x10 ⁸)	Frequency @1.5T (MHz)	Natural abundance	Relative Sensitivity
¹ H	1/2	2.675	63.6	100%	100%
¹⁹ F	1/2	2.517	59.8	100%	83%
³¹ P	1/2	1.083	25.7	100%	0.663%
²³ Na	3/2	0.708	16.8	100%	0.925%
¹³ C	1/2	0.673	16.0	1.1%	0.0176%

Hull University Teaching Hospitals NHS Trust

Mystery Case

Awareness of MR spectroscopy (MRS) and appropriate TEs for particular clinical questions

Key Points

- In high enough concentrations, ethanol can be visible in the brain
- Ethanol produces a triplet at 1.2ppm
- Lipid produces a multiplet at 1.3ppm and 0.9ppm

7.4 Frequency-dependant techniques

- Understanding of chemical shift: fat & water
 - The two dominate fat peaks (1.3ppm and 0.9ppm) experience a lower local magnetic field (B_0) due to the electron shielding compared to water. Fat precesses at a lower frequency than water. Chemical shift is 3.5ppm
 - $\Delta f = (64 \text{ MHz})(3.5 \text{ ppm}) = (64 \times 10^6 \text{ Hz})(3.5 \times 10^{-6}) \approx 220 \text{ Hz} @ 1.5T$
- Fat saturation
 - CHESS (Chemical Shift Selective) aka 'fat sat'. Narrowband RF pulse applied to fat peak. Quick but not very robust.
- In-phase & out-of-phase TEs, Dixon
 - Fat-water will be in/out of phase every 2.2ms @ 1.5T
 - Generate water or fat only image
 - In-phase image is a normal $T_1/T_2/P.D.$
 - Dixon Very robust fat-nulling. Time penalty.

7.4 Frequency-dependant techniques

- Awareness of MR spectroscopy (MRS) and appropriate TEs for particular clinical questions
 - MR Spectroscopy can provide metabolic information non-invasively in additional to conventional imaging sequences.
 - Key to good spectroscopic data is careful positioning and planning.
 - Considerations:
 - The clinical question
 - Whether single or multivoxel methods are required
 - The echo time of spectra (lactate inverted doublet at 144ms)
 - Examine planning images for partial volume effects.