

Magnetic Resonance Imaging

F.R.C.R. Physics Lectures

Lawrence Kenning PhD

FRCR MRI Syllabus

Hull University Teaching Hospitals

7.5 T₁-dependant techniques

- Inversion recovery (IR)
- Suppression: STIR & FLAIR. The role(s) of TR (and T_1) in determining null point.
- Increase T1-weighting e.g. MPRAGE
- Phase-sensitive IR

Fat issue

- Fat is hyperintense (bright) signal on T_1 , T_2 and P.D. weighted imaging
- On T₂ and P.D. weighting imaging fluid is hyperintense
- On T₁ weighed post-contrast imaging, the effect of gadolinium is hyperintense

Water and Fat Molecules

- Signal from water and fat both originate from protons but there are two key differences:
- Relaxation Times
- Chemical Shift

Water molecule H₂O

Fat molecule –CH₂–

- Fat has a shorter T₁ relaxation rate than water
- The two dominate fat peaks (1.3ppm and 0.9ppm) experience a lower local magnetic field (B_0) due to the electron shielding compared to water (4.7ppm)
- Fat precesses at a lower frequency than water

Tissue	T ₁ 1.5T (ms)
Fat	260
Liver	500
Grey Matter	900
CSF	2400

NHS Hull University Teaching Hospitals

Why Suppress?

- Remove bright signal from normal tissue i.e. fat or CSF
- Improve tissue contrast
 i.e. white-grey matter in the brain
- Improve appearance of contrast agents
- Confirm tissue characterisation i.e. fat vs. blood

Inversion recovery (IR)

- IR emphasises T_1 relaxation times of the tissues by extending the amplitude of the longitudinal recovery by a factor of 2
- Selection of an appropriate TI can thus suppress tissue signals (e.g., fats/lipids, CSF) depending on their T₁ relaxation times
- Initial 180° RF pulse inverts M_z to -M_z
- After a predefined delay, the time of inversion (TI), a 90° RF pulse rotates the recovered fraction of M_z into the transverse (M_{xy}) plane to generate the FID
- A second 180° pulse at TE/2 produces an echo
- The TR for IR is the time between 180° initiation pulses.

Inversion recovery (IR)

How to calculate TI_{null}

- TI_{null} depends on the ratio TR/T₁. Fat T1 @ 1.5T = 260ms / 3.0T = 370ms
- $TI_{null} = T_1 \times (ln(2) ln(1+e^{-TR/T1}))$ for spin echo
- $TI_{null} = T_1 \times (ln(2) ln(1 + e^{-TR-TElast/T1}))$ for FSE/TSE
- When TR>> T_1 (~5x), the equation can be simplified to $TI_{null} = T_1 \times In(2)$

- Short Tau Inversion Recovery (STIR), is a pulse sequence that uses a very short inversion time (TI) to supress fat
- The signal null (M_z=0) occurs at TI=ln(2)xT₁
- T_1 for fat at 1.5T is approximately 260 ms, therefore TI selected is 0.693 x 260ms = 180 ms
- Typical STIR sequences uses TI of 140-180ms and TR of approximately 2,500ms upwards
- In STIR, T₁ weighting comes from the inversion recovery process
- T₂ weighting generated by using longer TE values
- Generally a higher TI results in darker fat

- Initial 180° inversion pulse. Fat and water signals begin T₁ relaxation from -M₇
- Fat signal recovers quicker due to shorter T₁
- 3. Fat passes through the zero line at an inversion time $TI = T_1 \ln(2)$
- 4. Imaging sequence begins at this point
- 5. Water still has a longitudinal (reduced) component (negative) but is displayed as a positive value in a magnitude image

Short Tau Inversion Recovery (STIR) / Turbo inversion recovery magnitude (TIRM)

Hull University
Teaching Hospitals

Short Tau Inversion Recovery (STIR) / Turbo Inversion Recovery Magnitude (TIRM)

STIR can be implemented as:

2D or 3D TSE/FSE

2D PROPELLER/BLADE

A higher TI can be used for stronger fat suppression

A higher TE can be used for increased T2 weighting

Hull University
Teaching Hospitals
NHS Trust

Hull University Teaching Hospitals NHS Trust

Hull University Teaching Hospitals

Advantages	Disadvantages	Suggested applications
Insensitive to B ₀ and B ₁ inhomogeneities	Inefficient, long scan times	Anywhere CHESS or water excitation fail
Robust fat nulling even over large FOV's	Low SNR Water signal reduced by ~40-50%	Especially good for large FOV, unfavourable anatomy or in the presence of metal
	Suppresses all short T ₁ species (Gad)	
	Mixed image weighting (T_1)	
	Limited to T ₂ and P.D. (requires long TR)	

- Fluid attenuated inversion recovery (FLAIR)
 sequence, nulls the CSF signal and other
 water-bound anatomy in the MR image by
 using a TI selected at or near the bounce point
 of CSF to permit better evaluation of the
 surrounding anatomy
- TI is around 1700-2500ms for T₂ FLAIR depending on TR and field strength

T₂ FLAIR

- TI_{null} depends on the ratio TR/T_1 . CSF T1 @ 1.5T = 4600ms / 3.0T = 5800ms
- $TI_{null} = T_1 \times (ln(2) ln(1+e^{-TR/T1}))$ for spin echo
- $TI_{null} = T_1 \times (ln(2) ln(1 + e^{-TR-TElast/T1}))$ for FSE/TSE
- When TR is not $>>T_1$ (\sim 5x), the equation cannot be simplified like in STIR.

- Initial 180° inversion pulse. Tissue and CSF signal begin T₁ relaxation from -M₇
- CSF signal recovers slower due to longer T₁ relaxation time
- 3. CSF passes through the zero M_z at an inversion time $TI = T_1 \times (ln(2) ln(1 + e^{-TR-TElast/T1})) \text{ for } FSE/TSE$
- 4. Imaging sequence begins at this point

Hull University Teaching Hospitals NHS Trust

T₁ Fluid Attenuated Inversion Recovery (FLAIR)

Whilst T₂ weighted FLAIR is the most common variant, T₁W FLAIR is also possible

A T₁W FLAIR will be T₁ weighted with nulling of any tissue with a T1 similar to CSF

At 3.0T the T₁ values of CSF and tissue are longer resulting in poor differentiation of CSF and the cord on spinal imaging

Therefore T₁W FLAIR rather than T₁W imaging is performed for 3T spine imaging

Inversion Recovery Prepped T₁

Inversion Recovery Preparation

- 1. Initial 180° inversion pulse
- WM and GM signal begin T₁ relaxation from –M₇
- GM signal recovers slower due to longer
 T₁ relaxation time (900 vs 780ms)
- 4. When M_z is greatest, imaging sequence begins (TI~450ms)

Tissue	T ₁ 1.5T (ms)
Fat	260
White Matter	780
Grey Matter	900
Cerebral Spinal Fluid	2400

Hull University
Teaching Hospitals
NHS Trust

Inversion Recovery Prepped T₁

Hull University Teaching Hospitals

Inversion Recovery Prepped T₁

 $3DT_1FSPGR+C$ *FOV* = *30cm* Matrix = 256x256TR/TE = 8.3/3.1ms*SL Thick = 1.3/0mm Scan Time = 4:17*

3D T₁ IR-FSPGR +C *FOV = 25.6cm*

Matrix = 256x256

Phase FOV = 0.8

TR/TE = 8.2/3.2ms

TI = 450ms

SL Thick = 1/0mm

 $ARC = 2 \times 1$

Scan Time = 3:42

Phase sensitive Inversion Recovery (PSIR)

- IR sequences normally use magnitude reconstruction to translate the MR signal into pixel intensity
- Tissue brightness depends only on the magnitude of the longitudinal magnetisation, not its polarity
- Phase-sensitive Inversion Recovery (PSIR)
 reconstruction preserves the positive and negative
 polarities of tissues
- In PSIR, tissues with more negative longitudinal magnetisation always appear darker than those with more positive magnetisation
- Contrast-enhancing (infarcted) tissue always has a higher signal than viable myocardium, regardless of the chosen TI

Phase-sensitive IR

Hull University Teaching Hospitals NHS Trust

PSIR imaging can be further enhanced by optimal estimation of the inversion time using a TI-scouting

7.5 T₁-dependant techniques

- Inversion recovery (IR)
 - IR emphasises T_1 relaxation times of the tissues by extending the amplitude of the longitudinal recovery by a factor of 2. Uses a 180° pulse to invert spins before beginning pulse sequence.
- Suppression: STIR & FLAIR. The role(s) of TR (and T₁) in determining null point.
 - Selection of an appropriate TI can thus suppress tissue signals (e.g., fats/lipids, CSF) depending on their T_1 relaxation times
 - STIR. TI = 140-180ms @ 1.5T. Changing TI will effect fat suppression
 - T_2 FLAIR. TI = 1700-2500ms @ 1.5T depending on TR
 - Both techniques use magnitude reconstruction
- Increase T₁-weighting e.g. MPRAGE
 - T_1 values of GM and WM are similar which can result in poor soft tissue contrast. IR-prepped T1 can improve this.
 - MPRAGE or BRAVO

FRCR MRI Syllabus

7.5 T₁-dependant techniques

- Phase-sensitive IR
 - Phase-sensitive Inversion Recovery (PSIR) reconstruction preserves the positive and negative polarities of tissues
 - Contrast-enhancing tissue always has a higher signal than viable myocardium, regardless of the chosen TI

FRCR MRI Syllabus

Hull University Teaching Hospitals

7.6 Diffusion MRI

- Diffusion weighting, relationship with underlying cellularity
- B-values, ADCs and calculated b-values
- Potential perfusion contribution to ADC
- Diffusion anisotropy.

DWI can provide real-time information about the extracellular environment

- Using DWI, alterations in water diffusion can be detected within a few minutes from onset of ischaemia
- Net increase of water detected as an increase of T₂ signal takes 1–4 hours

- Random movement 'walk' of particles in a fluid or gas is known as: Brownian Motion (Robert Brown, 1827)
- Caused by thermal motion (agitation)

• Free diffusion

- *in vivo* molecular diffusion in tissue is not free, due to interactions with macromolecules, fibres and membranes
- Reveal microscopic details about tissue architecture
- Einstein's equation for diffusion due to Brownian motion $\langle r^2 \rangle = 6D\tau$
- $< r^2 > /6\tau = distance/time = D = self diffusion coefficient$

Diffusion weighting, relationship with underlying cellularity

Diffusion Weighting

Importantly, diffusion can only be measured in a single direction

Diffusion weighting, relationship with underlying cellularity

Pulsed Gradient Spin Echo (and changing b-value)

 γ = gyromagnetic ratio, G = strength of the gradient pulse

 δ = duration of the pulse, Δ time between the two pulses

Diffusion weighting, relationship with underlying cellularity

Signal Decay – mono-exponential model for extracellular diffusion

Remarkable people.

NHS Hull University Teaching Hospitals

Apparent Diffusion Coefficient (ADC)

$$S_b = S_0 e^{-bD}$$

$$ADC = D = \frac{-1}{b} \ln \frac{S_b}{S_0}$$

$$ADC = mm^2/sec$$

Apparent Diffusion Coefficient (ADC)

$$ADC = D = \frac{-1}{b} \ln \frac{S_{high}}{S_{low}}$$

Calculated b-values

• Once the ADC value for each voxel is calculated from 2 or more b-values, it's possible to extrapolate the fit to generate synthetic/calculated b-value images $(S_b=S_0e^{-b.ADC})$

NHS Hull University Teaching Hospitals

Benefits of Calculated b-values

- The MR diffusion weighted signal decays with increasing *b*-value
- Higher b-values have lower signal AND the higher b-value requires a longer TE which in turn also causes signal loss
- Calculated/synthetic diffusion generates the high b-value image contrast without scan time or signal penalties
- The shorter TE also results in less EPI distortion
- Higher b-value images usually increase lesion conspicuity

Stroke

Hull University Teaching Hospitals

b-value choice

- b-values should attenuate the healthy background tissue more than the lesion
- optimal b-value is approximately the reciprocal ADC value of normal background tissue WM+GM+CSF
- Brain = $^{1.0x10^{-3}}$ mm²sec⁻¹ => $1/1.0x10^{-3}$ = 1000mm⁻²sec
- Trade-off between signal attenuation from diffusion and background noise

B-values, ADCs and calculated b-values

Hull University Teaching Hospitals

Average/NEX/NSA Assignment

B-values, ADCs and calculated b-values

Hull University Teaching Hospitals

ADC

Artefacts - T₂ Shine-Through

- High signal on DW images
 - not due to restricted diffusion
- Caused by long T₂ values in lesions
 - mimicking restricted diffusion
- Seen in many pathologies
 - sub-acute infarctions
 - epidermoid cysts
- ADC provides 'real' answer

DWI

Hull University Teaching Hospitals NHS Trust

Susceptibility Issues

- Susceptibility Sources
 - Bone
 - Air
 - Hemosiderin
 - Dental work / clips
 - Tissue boundaries
- Solution?
 - Brain DWI PROPELLER / BLADE
 - FSE read-out, to minimize or eliminate distortions.
 - Multishot DWI MUSE/RESOLVE

Eddy Currents

- large, rapidly switched magnetic field gradients induce eddy currents in the conductive structures of the scanner
- produce additional unwanted magnetic fields
- field gradient at the sample differs from the prescribed field gradient, resulting in a difference between the actual and prescribed b-matrix
- slowly decaying field during readout of the image causes geometrical distortion

 Disadvantage of DWI PROPELLER (FSE) is the relatively long acquisition time and low SNR compared to EPI-DWI

Hull University Teaching Hospitals NHS Trust

Single shot versus multi shot

DWI – single-shot EPI

DWI – 2-shot EPI (MUSE)

DWI – single-shot EPI With Distortion Correction

rFOV Diffusion

- FOCUS/ZOOMit/iZOOM
- Small FOV diffusion sequence
- 2D RF excitation pulse that is spatially selective in both the slice select and phaseencoding directions

FOV = 240mm

Phase FOV = 0.3

Slice thick./spacing = 3.0/0.0mm

TR/TE = 2500/52ms

Frequency/phase = 128/38

Excitation Mode = FOCUS

Tensor = 12 directions

b-value = $600 \text{mm}^{-2} \text{s}$

NEX/ per direction = 12

Shim Volume

Selective excitation (FOCUS)

Non-selective excitation

excitation (FOCUS)

Hypoxic Injury

Hull University Teaching Hospitals NHS Trust

Lymphoma

Epidermoid

Differential Diagnosis: Arachnoid cyst vs. Epidermoid

Remarkable people. Extraordinary place.

TBI

Hull University Teaching Hospitals NHS Trust

Prostate DWI

Lesion in the peripheral zone of the gland apex

DWI b=1500mm⁻²s

Whole Body DWI

Whole Body DWI MIP – Calculated b=1400mm⁻²s

Conventional DWI ($S_b = S_0 e^{-b.ADC}$) uses mono-exponential fitting (straight line in the log domain) to estimate ADC values

Perfusion effects can contribute increased signal at very low b-value which can lead to overestimation of ADC values in highly perfusion organs and/or lesions

Intravoxel Incoherent Motion (IVIM)

- Water mobility in capillaries has a different nature than that resulting from thermal motion in tissue
- Le Bihan et al. (1986, 1988) separated both processes
- The concept of Intra-Voxel Incoherent Motion incorporates both thermally generated water mobility (D) and that resulting from the mobility within the capillary network (D*)
- The perfusion fraction is f

$$\frac{S_b}{S_0} = f e^{-b D*} + (1 - f)e^{-b D}$$

f ≈ cerebral blood volume (CBV)

D* ≈ mean transit time (MTT)

fD* ≈ cerebral blood flow (CBF)

Iso- / Aniso- trophic diffusion

Isotropic Diffusion			Anisotropic Diffusion			
А		c	F		ec	
А	1x 10 ⁻³	:C	A	1x 10 ⁻³	ec ec	
Α	mm²/sec	C	A	mm²/sec	ec ec	
Mea		/sec	Mea		²/sec	

Diffusion anisotropy

Hull University Teaching Hospitals NHS Trust

Anisotropy Mapping

Hull University Teaching Hospitals

Variations of diffusion imaging

Hull University Teaching Hospitals

The Tensor

- D_{xx} , D_{yy} , D_{zz} are the diffusion in the main axis
- Assume that: $D_{xy} = D_{yx} D_{xz} = D_{zx} D_{yz} = D_{zy}$
- Therefore: only 6 elements are needed to create the tensor.
- 6 non-collinear gradient directions

Diffusion anisotropy

NHS Hull University Teaching Hospitals

The Tensor

For each voxel:

eigenvalues eigenvectors

$$ADC = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$

$$FA = \sqrt{\frac{3}{2}} \sqrt{\frac{(\lambda_1 - ADC)^2 + (\lambda_2 - ADC)^2 + (\lambda_3 - ADC)^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Hull University Teaching Hospitals NHS Trust

Low Grade Glioma

Diffusion anisotropy

Red = magnitude of eigenvector(1)

Green = magnitude of eigenvector(2)

Blue = magnitude of eigenvector(3)

Anterior-Posterior

Right-Left

Superior-Inferior

DTI Tractography for Surgical Planning

- Best possible resection
- Preserve eloquent areas and major white matter tracts
- Minimise postoperative morbidity

Diffusion anisotropy

	People State People						
		Modeling approach	DWI sampling	DWI weighting	Metrics	Seminal references	Teaching Hos
	ADC	$S = S_0 e^{-hD}$	Few DWIs; one b=0 and 1 DWI	Low	ADC	Eccles et al., 1988	
	DTI	$S = S_0 e^{-h xD}$	Few DWIs; one shell, minimum six directions	Low	Combinations of λ1, λ2, λ3. e.g. FA, TR, WL, WP	Basser et al., 1994	
	DKI	S=S ₀ e ^{-bD+3b²D²K}	Moderate number of DWIs; two shells	Low and moderate only	DTI metrics and mean kurtosis, axial and radial kurtosis and KFA	Jensen et al., 2005; Tabesh et al., 2011; Glenn et al., 2015	
Dif	МАР	Asymmetric simple harmonic oscillator reconstruction and estimation	Moderate to many DWIs; multishell acquisition	Low, moderate, and high	DTI metrics and non-Gaussianity, zero-displacement probabilities, propagator anisotropy, ODFs	Özarslan et al., 2013; Avram et al., 2016	ing
b-v:	DSI	Model-free	Many DWIs; Cartesian grid	Low, moderate, and high	ODFs possible to generate zero- displacement probabilities	Tuch et al., 2003)-values
	Q-ball	Model-free	Moderate no. of DWIs; single-shell HARDI ac- quisition	High	ODFs possible to generate zero- displacement probabilities	Tuch, 2004	
ľ	CHARMED	Intra/extra-axonal compartments modeled by restricted/hindered sheets and cylinders	Multishell acquisition	Low, moderate, and high	Restricted and hindered component fractions; cone of uncertainty	Assaf & Basser, 2005	ging
	Axcaliber	Similar to CHARMED, but with additional modeling of axon diameter	Multishell acquisition	Low, moderate, and high flexible	CHARMED metrics and axon diameter	Assaf et al., 2008	aging
	NODDI	Watson distributed cylinders and sticks	Moderate no. of DWIs: multishell acquisition	Low, moderate, and high (flexible)	Cellular fractions, orientation dispersion index	Zhang et al., 2012; Tariq et al., 2016	
	WMTI	Intra/extra-axonal compartments modeled with the Gaussian part of the DKI model	Moderate no. of DWIs; two shells (same as DKI)	Low and moderate only	Axonal water fraction, intra-axonal diffusivity, extra-axonal radial/axial diffusivity, extra-axonal tortuosity	Fieremans et al., 2011	

FRCR MRI Syllabus

7.6 Diffusion MRI

- Diffusion weighting, relationship with underlying cellularity
 - Diffusion weighted imaging is highly sensitive to tissue environment.

 Traditionally used to examine extracellular conditions of tissue (DWI)
- B-values, ADCs and calculated b-values
 - Select b-value according to ADC of the tissue being scanned. Beware of T_2 shine through. ADC (mm²/s) is "gold standard"
- Potential perfusion contribution to ADC
 - Use b-values that are less sensitive to perfusion (50-100 rather than 0mm⁻²s). IVIM.
- Diffusion anisotropy.
 - Can be used to interrogate tissue structure (DTI)